Halbleiterinformationen - 99

Mitteilung aus dem VEB Elektronikhandel Berlin

Ing. ERWIN GÖTTEL

Sowjetische Transistoren 33

HF-Sperrschichtfeldeffekttransistoren ΚΠ 303 A bis ΚΠ 303 E (KP 303 A bis KP 303 E)

n-Kanal-Si-Planar-Epitaxie-FET

Diese Typen sind vorgesehen für Gleichstromverstärker, für Verstärker tiefster Frequenzen und NF-Verstärker, für Breitband- und Resonanzverstärker, für ladungsabhängige Vorverstärker der Kernspektrometrie sowie für Kleinsignalverstärkeranwendungen im Betriebstemperaturbereich von $-60\cdots+125$ °C.

Gehäuse: ähnlich TO 18 (Bild 1).

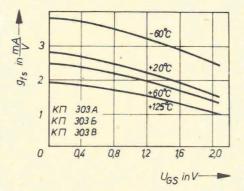


Bild 2: Typische Abhängigkeit der Vorwärtssteilheit von der Gatespannung

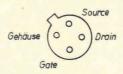


Bild 1: Gehäuse

Grenzwerte im Temperaturbereich

 $\theta_{\rm amb} = -60 \cdots + 125 \,^{\circ}\text{C}$

Gate-Sourcespannung U _{GS max}	30 V
Gate-Drainspannung U _{GD max}	30 V
Drain-Sourcespannung UDS max	25 mA
Drainstrom ID max	20 mA
Gatestrom IG max	5 mA
Verlustleistung bei ϑ _{amb} = 25°C P _{tot}	200 mW

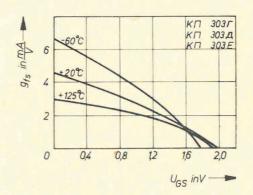


Bild 3: Typische Abhängigkeit der Vorwärtssteilheit von der Gatespannung

Garantierte Hauptkennwerte bei ∂amb = 25°C ± 10 grd

Тур			КП 303 А		КП 303 Б		КП 303 В		КП 303 Г		'КП 303 Д		КП 303 Е		Meßbedingungen			
Größe	Kurz- zeichen	Maß- einheit	min	max	min	max	min	max	min	max	min	max	min	max	U _{DS}	U _{GS}	I _D	Hz
	•			1						1	-							
Vorwärtsüber-		* 0.5								-					40			
tragungsleitwert	9ts	mA/V	1	4	1	4	2	5	3	7	2,6		4		10	0		
Drainstrom	IDSS	mA	0,5	3	0,5	3	1,5	5	3	12	3	9	5	20	10	0	-	-
Gate-Reststrom	I _{GSS}	mA		1		1		1		0,1		5		5	0	10		_
	1655	illes								0,1		1						
Pinch-off- Spannung	U _{P(off)}	V	0,3	3	0,3	3	1	4		8		8		8	10		0,01	
Spannang	OP(off)	V	0,3	3	0,3	3	'	7				0		o	10		0,01	
Eingangs-	_	pF		6		6		6		6		6		6	10	0		10
kapazität	Ciss	рг		0		0		0	1	0		0		0	10	· ·		10
Rückwirkungs-	_	-													40			10
kapazität	Crss	pF		2		2		2		2		2		2	10	0		10
Rauschspannung	Sit	nV// Hz		50		-,		-		-		-		-	10	0	-	20
						30		30				_		_	10	0	_	1 k
						50		50								Ĭ		- '
Rauschladung ¹),	Qn	10 ^{−16} C		-		-		-		0,6		-		-	10	0	_	-
Rauschfaktor	F	dB		_		-		_		_		4		4	10	0	_	100

¹⁾ Quadratischer Mittelwert der Rauschladung in einem Frequenzbereich, bestimmt durch integrierende und differenzierende Glieder mit einer Zeitkonstante von 1 μ s, bei einer Generatorkapazität von 10 pF und einem Generatorwiderstand von 1 G Ω .

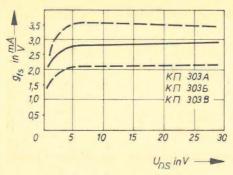


Bild 4: Abhängigkeit der Vorwärtssteilheit von der Drain-Source-Spannung
—— typische Werte, --- Grenzen der 80 %-Streuung

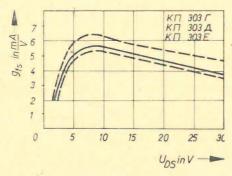


Bild 5: Abhängigkeit der Vorwärsstellheit von der Drain-Source-Spannung —— typische Werte, --- Grenzen der 80 %-Streuung

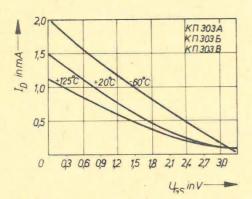


Bild 6: Typische Abhängigkeit des Drainstroms von der Gatespannung

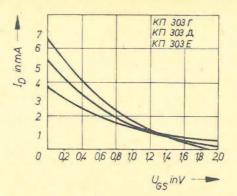


Bild 7: Typische Abhängigkeit des Drainstroms von der Gatespannung

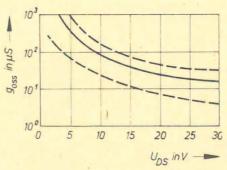


Bild 8: Abhängigkeit des Ausgangsleitwertes von der Drain-Source-Spannung
—— typische Werte, --- Grenzen der 80 %-Streuung

Prospektmaterial

über die Literatur des

VEB VERLAG TECHNIK BERLIN

fordern Sie bitte bei Ihrem Buchhändler an!

Berichtigung

In dem Diskussionsbeitrag "Eigenschaften und Anwendung der Schaltkreisserie D 10" im Heft 17 (1973) S. 578, sind bedauerlicherweise verschiedene Fehler in den Gleichungen enthalten, so daß wir im folgenden die Gleichungen ab Punkt 4. noch einmal richtig abdrucken:

$$\begin{split} S = A \oplus B \oplus \mathbb{U}_n &= (\overline{A}B \bigvee A\overline{B}) \oplus \mathbb{U}_n \\ &= \overline{\mathbb{U}}_n (\overline{A}B \bigvee A\overline{B}) \\ &\vee \mathbb{U}_n (\overline{A}B \bigvee A\overline{B}) \\ &= AB\overline{\mathbb{U}}_n \bigvee A\overline{B}\overline{\mathbb{U}}_n \\ &\vee \mathbb{U}_n (A \bigvee \overline{B}) \\ &(\overline{A} \vee B) \\ &= \overline{A}B\overline{\mathbb{U}}_n \bigvee A\overline{B}\overline{\mathbb{U}}_n \\ &\vee (A\overline{A} \vee \overline{B}\overline{A} \vee B\overline{B} \vee AB)\mathbb{U}_n \\ S &= \overline{A}B\overline{\mathbb{U}}_n \bigvee A\overline{B}\overline{\mathbb{U}}_n \bigvee A\overline{B}\overline{\mathbb{U}}_n \\ \mathbb{U}_{n+1} &= AB \vee A\mathbb{U}_n \vee B\overline{\mathbb{U}}_n \end{split}$$

$$\begin{split} Z &= \overline{\overline{A}B \vee A\overline{B}} = (A \vee \overline{B}) \, (\overline{A} \vee B) \\ &= A\overline{A} \vee AB \vee \overline{A}\overline{B} \vee B\overline{B} = AB \vee \overline{A}\overline{B} \\ \mathbb{U}_{n+1} &= \overline{\overline{A}B \vee \overline{\mathbb{U}_n}} \overline{Z} = AB \vee \mathbb{U}_n Z \\ \overline{S} &= \mathbb{U}_n Z \vee \overline{\mathbb{U}_n} \overline{Z} \\ \\ S &= \overline{\mathbb{U}_n Z \vee \overline{\mathbb{U}_n}} \overline{Z} = (\overline{\mathbb{U}_n} \vee \overline{Z}) \, (\mathbb{U}_n \vee Z) \\ &= \mathbb{U}_n Z \vee \mathbb{U}_n Z \\ \mathbb{U}_{n+1} &= AB \vee \mathbb{U}_n \, (AB \vee \overline{A}\overline{B}) \\ &= AB \vee \mathbb{U}_n \overline{A}\overline{B} \\ S &= \overline{\mathbb{U}_n (AB \vee \overline{A}\overline{B})} \vee \mathbb{U}_n (\overline{AB \vee \overline{A}\overline{B})} \end{split}$$

$$= AB\overline{\mathbb{U}}_n \vee \overline{A}\overline{B}\overline{\mathbb{U}}_n \\ \vee \mathbb{U}_n(\overline{A} \vee \overline{B}) (A \vee B) \\ S = AB\overline{\mathbb{U}}_n \vee \overline{A}\overline{B}\overline{\mathbb{U}}_n \vee \overline{A}B\mathbb{U}_n \vee A\overline{B}\mathbb{U}_n$$