ralar+ran

RAUSCHGENERATOR
 03004

VEB ROBOTRON-MESSELEKTRONIK "OTTO SCHON. DRESDEN

Technische Beschreibung und Bedienungsanleitung

RAUSCHGENERATOR 03004

Gültig ab Fabr.-Nr. 81001

Diese Bedienungsanleitung onthlilt nur Angaben, die sioh auf den Rausohgenerator beziehen.

Bedienungshinweise sowie Eigensohaften, die im Zusammenhang mit den Ubrigen Funktionsblbaken von Interesse sind, werden in den Bedienungsanleitungen der Standardgerate erllutert. Meßplatzbesohreibungen sowie Applikationshinweise enthlit das Handbuoh "Meßplatze der Sohall- und Sohwingungsmeßteohnik", das vom VEB ROBOTRON-MESSELEKTRONIK "OTTO SCHON" Dresden bezogen werden kann.

[^0]2 Dämpfungseinsteller "fein" R1
3 Dämpfungsschalter "grob" A11-S1

Bild 1
RAUSCHGENERATOR 03004
Vorderansicht
Bedienungselemente
Рис. 1
ГЕНЕРАТОР ШУМА 03004
Вид спереди
Элементы управления
Fig. 1
03004 NOISE GENERATOR
Front View
Control Elements

- 6 -

2 Blindplatten
3 Systemgehäuse 04012
4 Netzteil 04003 bzw. 04014

Rauschgenerator, komplett
Bestell-Nr. 577918.7

Bild 2
RAUSCHGENERATOR.KOMPL.
Vorderansicht

Рис. 2
ГЕНЕРАТОР ШУМА КОМПЛ.
Вид спереди

Fig. 2
NOISE GENERATOR COMPL.
Front View

1. Anwendungsgebiet

Der Rauschgenerator 03004 ist oin Funktionsblock des Meßgeratesystems der Akustik und Schwingungsteohnik. Das Gerkt dient als Spannüngsquelle zur Frzeugung von stochastischen Vorgängen mit kontinuierliohem Spektrum. Derartige Rauschsignale kరnnen mit Vorteil fur elektroakuètische und schwingungstechnische Me β - und Priffaufgaben verwendet werden.

In Verbindung mit Terz- und Oktavfiltern lassen sich u. a. frequenzabhängige Körper und Luftschalldämmungen, Nachhallzeiten und Schallverteilungen messen.

Mit Hilfe der Rauschsignale kann man spezielle Eigenschaften von

- mechanischen Anlagen, wie Fahrzeugen und Servosystemen,
- elektrischen Schaltungen, z. B. Regelkreisen und Lautsprechern,
- mechanischen und elektrischen Bauelementen durch Messung der Ermildungskurven
untersuchen.
Weitere Anwendungsmoglichkeiten sind:
- Untersuchungen von nichtlinearen Verzerrungen in Verstärkern und tbertragungssystemen,
- physiologische Untersuchungen zum Studium der Lautstarkebildungsgesetze sowie der Lästigkeits- und Schadenswirkung von Schall auf den Menschen,
- Simulierung der Kanalbelegung in der Tragerfrequenztechnik,
- allgemeine Untersuchung stochastischer Prozesse.

Der Frequenzbereich des Rauschgenerators 03004 reicht vom tiefen Infraschallbereich bis weit in das Gebiet des Ultraschalls.

Der Rauschgenerator 03004 kann mit Zweikanalschaltern, steuerbaren Generatoren, Filtern, Drehtischen, Regel- und Anzeigeteilen, digitalen Auswertegeräten und dergleichen zu
kompletten Meßplïtzen fur manuelle und automatische Auswertung zusammengeschaltet werden.

Somit lapt sich der Rauschgenerator 03004 im Rahmen der Lärmbekämpfung, der Raum- und Bauakustik, der Schwingungeme β technik und der allgemeinen NF-Meßtechnik einsetzen.

Der Rauschgenerator wird als Einschub oder als komplettes Gerlt mit Netzteil im Systemgehäuse geliefert. Der Einschub lät aich in Standardgeräte des Meßgerlitesystems der Schall- und Schwingungsmeßtechnik einbauen.

2. Lieferumfang

Gegtelleingchub

1 Rauschgenerator 03 004, ZAK-Nr. 1387820001 214302, mit: 1 Systemkabel SS-BNC 1,6, 04016

1 Bedienungeanleitung pur den Rauschgenerator 03004
1 Garantieurkunde

Gegtelleingchub, komplett mit Sygtemgehaiuse und Netzteil
1 Rauschgenerator. (komplett) 577 918.7, ZAK-Nr. 1387820001 214257,
mit: 1 Systemkabel SS-BNC 1,6, 04016
1 Netzanschlußkabel 2/3 SHAG, 77094
3 Blindplatten (40 mm) 590036.6
2 G-Schmelzeinsätze T 630 TGL 0-41571
1 Bedienungsanleitung fur den Rauschgenerator 03004
1 Bedienungsanleitung fur Systemgehäuse 04 012/04 013 und Netzteif 04 003/04 014
3. Teohnische Daten

Die technisohen Daten werden nur garantiert, wenn der Rausohgenerator 03004 in einem Systemgehảuse 04012 oder 04013 zugammen mit dem Netzteil 04014 oder 04003 betrieben wird.

Rauschspektren

- Weißes Rauschen
- Rosa Rauschen ($-3 \mathrm{~dB} / 0 \mathrm{ktave}$)
$\begin{array}{lll}2 \mathrm{~Hz} \text { bis } 20 \mathrm{kHz} \\ 2 \mathrm{~Hz} & \text { bis } 200 \mathrm{kHz}\end{array}$ umschalt2 Hz bis 200 kHz

Ausgangegröß en
Nenn-Ausgangespannung
(bei Leerlauf) 1 V
Grobeinstellung in $\quad 0$ bis -60 dB

10-dB-Schritten
Feineinstellung

Innenwiderstand R_{I}
zulässiger Lastwiderstand R_{L}
Amplitudenverteilung nach Gauß

- fuir Ausgangspegel $\leqq 0 \mathrm{~dB}$
- fur Ausgangspegel $\leqq-6 \mathrm{~dB}$

Grund-_und_Zusatzfehler
Abweichung vom idealen Spektrum

- Weißes Rauschen
- Rosa Rauschen
mindestens 4 ũ
mindestens 8 亿̃

Weitere Angaben

Stromversorgung (durch das Netzteil 04014 oder 04003$)$	$220 \mathrm{~V} \pm 22 \mathrm{~V}, 50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$
erforderliche Betriebs- spannungen	$\pm 21 \mathrm{~V}$ unstabilisiert
Leistungsaufnahme	$\leqq 1,5 \mathrm{~W}$
Klimatische Bedingungen nach TGL $14283 / 05$	

- Betriebsbedingungen Arbeitstemperaturbereich relative Luftfeuchte Wasserdampfdruck

0 bis $+50{ }^{\circ} \mathrm{C}$
§ 90%
$\leqq 4 \mathrm{kPa}$

- Lager- und Transportbedingungen

Lagertemperaturbereich
relative Luftfeuchte
Wasserdampfdruck
-25 bis $+55^{\circ} \mathrm{C}$
$\leqq 90 \%$
$\leqq 4 \mathrm{kPa}$

Meohanische Festigkeit nach
TGL 14283/09 und TGL 200-0057/04/06

- Beanspruchungegruppe G21
- Prufklasse

Eb 6-15-12000/3
Schutzklasse nach TGL 21366
I
Schutzgrad nach TGL RGW 778

- Einschub - IP 00
- im Systemgehaluse (be1 vorge-

IP 20 schriebener Abdeckung nicht besetzter Steckplätze)

Funkstörgrenzwert nach F1
TGL 20̣885/13
Abmessungen ($\mathrm{B} \times \mathrm{H} \times \mathrm{T}$) $\quad 40 \mathrm{~mm} \times 160 \mathrm{~mm} \times 300 \mathrm{~mm}$
Masse etwa 3 kg

Schutzglite ist gevährleistet; es gibt keine verbleibenden Gefährdungen oder Erschwernisse.
4. Aufbau und Arbeitsweise

4.1. Aufbau

Der Rausohgenerator 03004 ist als 40 mm breiter Gestelleinschub ausgefuhrt.

Die elektrische Schaltung ist auf eine grope Leiterplatte und auf zwei Subleiterplatten aufgeteilt. Die Bedienungselemente befinden sioh an der Frontplatte. Samtliche Anschllisse sind an der Rlickseite des Gestelleinschubes angeordnet, Die Lage der Leiterplatten, der Bedienungs- und der Anschlußelemente ist dem Bild 7 zu entnehmen.

4.2. Theoretische Grundlagen

Das Rauschsignal im Rauschgenerator 03004 wird durch die Elgenbewegung bzw. Bewegungsschwankungen der Ladungstrager (thermisches Rauschen) eines Widerstandes erzeugt. Das Spektrum umfaßt theoretisch den Frequenzbereich von 0 bis ∞. Der Begriff "Weißes Rauschen" entstand als Analogie zum weiBen Licht, das ebenfalls ein breites Frequenzapektrum aufweist.

Rauschsignale sind stochastische Prozesse und lassen 'sich nach Methoden der statistischen Signaltheorie behandeln. Zum besseren Verstundnis sollen einige Begriffe erlautert werden, wobei auf exakte mathematische Ableitung verzichtet wird.

Jedem zufalligen Ereignis A laft aich eine reelle, nicht negative Zahl zwischen 0 und 1 zuordnen, die man die Wahr scheinlichkeit w (A) des zuffiligen Ereignisses A nennt. Tritt A mit Sicherheit ein, ist $w=1$; tritt es mit Sicherheit nicht ein, ist $w=0$. In unseren Betrachtungen ist das zufullige Ereignis der Amplitudenwert der Rauschspannung zu einem bestimmten Zeitpunkt, d. h.,es besteht keinè vorausschaubare`Beziehung zwischen Momentanampiltudenwert der Rauschspannung und der Zeit. Es laft sich jedoch die Wahrsoheinlichkeit $w(u, u+\Delta u)$ dafir angeben, daß sich der Momentanamplitudenwert in den Grenzen zwischen u und $u+\Delta u$
bewegt. Vollzieht man den Grenzübergang zu differentiell kleinen Amplitudenintervallen Δu, dann erhalt man die Wahrscheinlichkeitsdichte W (u):

$$
W(u)=\lim _{\Delta u \rightarrow 0} \frac{w(u)-w(u+\Delta u)}{\Delta u}
$$

mit $W(u)=$ Wahrscheinlichkeitsdichte
w $(u)=$ Wahrscheinlichkeit, mit der ein beliebiger Momentanamplitudenwerṭ die Amplitude u überschreitet
$w(u+\Delta u)=$ Wahrscheinlichkeit, mit der die Amplitude $u+\Delta u$ von Momentanamplitudenwerten überschritten wird.
Wird die Wahrscheinlichkeitsdichte Uber alle möglichen Amplitudenwerte integriert, so ist der Integralwert 1. Dieser Wert sagt aus, daß man mit Sicherheit bei Vorhandensein aller mbglichen Amplitudenwerte einen bestimmten Amplitudenwert findet.

Eine sehr bekannte Wahrscheinlichkeitsdichtekurve in normier ter Form ist die Glockenkurve nach Gauß. Sie wird auch als Normalverteilung bezeichnet, wobei gilt:

$$
W(u)=\frac{1}{\tilde{u} \sqrt{2 \pi}} \quad \exp -\frac{u^{2}}{2 \tilde{u}^{2}}
$$

mit $\tilde{\mathrm{u}}=$ Effektivwert der Rauschspannung.
Diese Funktion ist im Bild 3b dargestellt. Sie gibt die "Amplitudenverteilung" an.

Bei verschiedenen Anwendungsfallen ist jedoch nicht die Wahr scheinlichkeit fur das Auftreten eines bestimmten Momentanwertes (Amplitudenverteilung) wichtig, sondern die Wahrscheinlichkeit dafur, daß dieser Momentanwert innerhalb vorgegebener Grenzen Uberschritten wird.
Die tberschreitungswahrscheinlichkeit w als Funktion von $\frac{u}{\tilde{u}}$ für Momentanwerte bis zum 3,9fachen Fffektivwert bei Rauschen ist in Bild 3c dargestellt (s. auch Diagramm auf S. 28).

Bild 3
a) Rauschsignal
b) Amplitudenverteilung nach Gauß
c) Ubersobreitungswahrscheinlichkeit
"Farbiges" Rauschen ist wieder als Analogie zum Licht zu sehen und bedeutet das Herausfiltern von speziellen Spektren.

Beim Rosa Rauschen nimmt der Spannungspegel mit wachsender Frequenz um 3 dB/Oktave ab. Rosa Rauschen wird bei akustischen Messungen mit Terz- und Oktevfiltern verwendet.

Bei diesen Filtern verdoppelt sich die Bandbreite, wenn die Mittenfrequenz um den Faktor 2 vergrbßert wird, d. h., sie haben eine konstante relative Bandbreite. Wurden diese Filter an eine Rauschquelle mit konstanter Energieverteilung Liber der Frequenz (WeiBes Rauschen) angeschlossen, so wurde sich bei Frequenzbereichsumschaltung der Bezugswert der Anzeige laufend ändern. Das Weiße Rauschen wird durch ein ${ }^{\circ} \mathrm{RC}$ Filter (Rosa-Filter) mit $-3 \mathrm{~dB} / \mathrm{Ok}_{\mathrm{tave}}$ vorverzerrt. Dadurch ist die Energieverteilung gleichbleibend pro Terz (oder Oktave) oder jedem beliebigen Frequenzband mit konstanter relativer Bandbreite $\frac{\Delta f}{f}$.

4.3. Arbeitsweise

Die prinzipielle Arbeitsweise des Rauschgenerators 03004 geht aus Bild 4 hervor.

Der Breitbandverstärker (1) verstärkt die Rauschspannung der Widerstände $R 7 / R 8$. Der Regelverstärker (2) wird über die Regelstufe (3) so gesteuert, daß am Ausgang der Mischstufe (4) immer $\tilde{u}=$ konst. ist. Das Ausgangssignal des Mischers ist das in die NF-Lage umgesetzte breitbandige Rauschen von (1). Die Oszillatorfrequenz (5) ist $f=550 \mathrm{kHz}$.

In der Filterstufe (6) kann wahlweise ein Sallen-und-KeyTiefpaß $200 \mathrm{kHz} / 20 \mathrm{kHz} \mathrm{bzw}$. ein Rosa-Pilter in den Signalweg geschaltet werden. Mit dem Feinregler (7) ist eine kontinuierliche Absenkung des Ausgangspegels um maximal -12 dB möglich. Die Endstufe (8) gewährleistet bei einem Lastwider stand $R_{L} \geqq 600 \Omega$ noch eine exakte Amplitudenverteilung nach Gauß bei um etwa 8% reduzierter Ausgangsspennung.

Durch die Anordnung des Grobteilers (9) am Ausgang wird bei Absenkung des Signalpegels auch eine eventuell Uberlagerte Offsetspannung entsprechend vermindert.

Bild 4
Blockschaltbild des Rauschgenerators 03004

1 Breitbandverstärker mit Rauschquelle
2 Regelverstärker
3 Regelstufe
4 Mischstufe
5 Oszillator
6 Schalter WEISS/ROSA
7 Ausgangsspannungsregler "fein"
8 Endverstärker
9 Ausgangsspannungsteiler "grob"

An der Buchse X 1 kann das Rauschsignal abgenommen werden. Die maximale Ausgangsspannung ist $\tilde{u}=1 \mathrm{~V}$, bei einer symmetrischen Amplitudenverteilung nach Gauß bis $\frac{u}{\widetilde{u}}=4$.

Dieser Wert wird theoretisch nur während 0,01 \% der Beobachtungszeit uberschritten. Daher kann man annehmen, da β alle vorkommenden Rauschamplituden unverzerrt ubertragen werden.

5. Vorbereitung zum Betrieb und Betriebsanleitung

5.1. Allgemeines

Steht der Rauschgenerator unkomplettiert als Einschub zur Verfligung, ist er in ein entsprechendes Systemgehäuse mit Netzteil (siehe Abschnitt 2.2.) einzuschieben. Zuvor sind eventuell vorhandene Blindplatten im Gehäuse zu entfernen und die Plastschienen zur Fuhrung des Gestelleinschubs im Systemgehaluse oben und unten einzusetzen.

Achtung! Zur Gewährleistung des Berluhrungsschutzes sind alle unbesetzten Einschubplätze an der Vorder und Rưckseite des Systemgehäuses durch Blindplatten abzudecken!
5.2. Funktionszweck der Bedienungs- und Anschlußelemente Die Bedienungselemente sind auf der Vorderseite des Rauschgenerators angebracht (Bild 1). Der Ausgang befindet sich an der Ruickseite des Gestelleinschubs. Die beiden Schalter, der Dampfungsregler und die BNC-Buchse haben folgende Funktionen:

Schalter WEISS/ROSA
Zur Wahl der Rauschapektren

- Rauschen WEISS 20 kHz
- Rauschen WEISS 200 kHz
- Rauschen ROSA $\quad 200 \mathrm{kHz}^{1)}$

Die Zahlen geben jeweils die obere Grenzfrequenz (Welligkeit $\leqq 0,5 \mathrm{~dB}$ bei Sinus) des gewählten Bereiches an. Die untere Grenzfrequenz ist in allen drei Bereichen $f_{u}=2 \mathrm{~Hz}$.
Dämpfungseinsteller "fein" Zur Einstellung des Ausgangspegels kontinuierlich von 0 bis etwa -12 dB . Bei Rechtsanschlag des Reglers ist die Dämpfung 0 dB .

[^1]Dämpfungeschalter "grob"

BNC-Buchse Ausgang X 1

Zum Absenken des Ausgangspegels in $10-\mathrm{dB}-$ Schritten bis -60 dB . In der Schalterstellung 0 dB (Rechtsstellung) ist der Pegel maximal. Der Innenwiderstand des Rauschgenerstors bleibt stets konstant $\left(R_{1}=50 \Omega\right)$. Zur Entnahme des Rauschsignals.

5.3. Einstellung und Anschluß des Gerëtes

Der Rauschgenerator ist entsprechend den Frfordernissen des Meßplatzes mit den zum Lieferumfang der Funktionsbl甘cke gehbrenden F jeln an den in der Meßkette folgenden Funktionsblook bzw. d $\%$ folgende Gerit anzuschließen. Dann wird das Gerlt, in dem der Rauschgenerator eingesetzt ist, an das Netz angeschlossen.

Das fur die Messung erforderliche Rauschspektrum wird gewählt.

Mit dem Dampfungsschalter "grob" lassen sich folgende Pegelwerte der Ausgangsspannung einstellen:

Pegel in dB	0	-10	-20	-30	-40	-50	-60
Effektivwert der Ausgangsepannung in mV	1000	316	100	31,6	10	3,16	1,0

Diese Zuordnung gilt, wenn der Dämpfungseinsteller "fein" am Rechtsanschlag steht. Die Zwischenwerte lassen sich mit dem Dämpfungseinsteller "fein" einstellen.

Sollte fur spezielle Messungen eine symmetrische Gauß-Verteilung bis $\frac{u}{\sim}=8$ notwendig sein, so ist mit dem Dämpfungseinsteller "fein" \tilde{u} der Ausgangspegel um -6 dB abzusenken (Mittelstellung). Mit dem Dämpfungsechalter "grob" kann die Amplitudenverteilung nicht beeinflußt werden.

Oft ist es nötig, mittels nachgeschalteter Filter aus dem Rauschspektrum bestimmte Teilbereiche herauszufiltern bzw. auszublenden.

Handelt es sich um Frequenzen < 20 kHz , kann die obere Grengfrequenz mit dem Schalter WEISB/ROBA auf 20 kHz eingestellt werden.

Am Ausgang des Rauschgenerators steht dann eine höhere effektive Rauschspannung zur Verfügung.
Dabei ist die Anpassung zu beachten. Der Rausahgenerator hat einen Innenwiderstand $R_{1}=50$. . Besteht keine Ubereinstimmung zwischen dem Innenwiderstand des Generators und der Impedanz des Verbrauchers, so kann zur Anpassung ein Vierpol zwischengeschaltet werden.

Der Wellenwiderstand des Vierpols muß eingangsseitig dem Innenwiderstand R_{1} des Generators entsprechen. Ausgangsseitig 1st er entsprechend der Impedanz des Verbrauchers auszulegen (siehe Bild 5).

Bild 5
Anpassung durch Widerstandsnetzwerk
Es gilt $R_{1}=\sqrt{Z\left(Z-R_{1}\right)}$ und $R_{2}=R_{i} \sqrt{\frac{Z}{Z-R_{i}}}$; dabei ist
die Dämpfung des Vierpols

$$
a / d B=20 I_{g} \frac{R_{1}+Z}{2} .
$$

Bei Anschlup von Filterm ergibt sich die Rauschleistung P_{F} in einem Teilbereich (Δf) des Gesamtspektrums ($P_{\text {ges }}, \Delta f_{\text {ges }}$) wegen der Kontinuitët der Fnergieverteilung zu

$$
P_{F}=P_{g e g} \cdot \frac{\Delta f_{F}}{\Delta f_{g e s}}
$$

$\Delta f_{F}=$ Filterbandbreite,
und daraus erhalt man die effektive Rauschspannung am Filterausgang:

$$
\tilde{u}_{F}=\tilde{u}_{g e s} \sqrt{\frac{\Delta f_{F}}{\Delta f_{g e s}}}
$$

Filter besitzen keine ideal steilen Flanken. Dies sollte dadurch berlicksichtigt werden, daß man einen "effektiven" tbertragungafaktor definiert. Der glockenformigen Filterkurve wird ein Rechteck derart eingeschrieben, daß es die Breite des Filter-Durchlaßbereiches einnimmt und dieselbe "Rauschleistung" umhullt wie das Filter selbst (siehe Bild 6).

Bild 6
Schematische Darstellung zur Berechnung der effektiven Rauschspannung

Dabei sei: $\quad b^{2}=$ Quadrat des thertragungsfaktors

$$
\begin{aligned}
{[b(f)]^{2}=} & \begin{array}{l}
\text { gegebene Kurve fur Quadrat des Uber- } \\
\\
\text { tragungsfaktors }
\end{array} \\
b_{e f f}^{2}= & \begin{array}{l}
\text { Quadrat des wirksamen tbertragungsfak- } \\
\text { tors }
\end{array} \\
f_{u}, f_{o}= & \text { Filtergrenzfrequenzen }
\end{aligned}
$$

Man erhalt

$$
b_{e f f}^{2}=\frac{1}{f_{0}^{-} f_{u}} \int_{0}^{\infty}[b(f)]^{2} d f \quad \text { und daraus die }
$$ Spannung am Filterausgang zu

$$
\tilde{u}_{F}^{*}=b_{e f f} \cdot \tilde{u}_{F}=b_{e f f} \cdot \tilde{u}_{g e s} \sqrt{\frac{\Delta f_{F}}{\Delta f_{g e s}}}
$$

$\tilde{u}_{F}=\begin{aligned} & \text { effektive Raschspannung am Ausgang eines idealen } \\ & \\ & \text { Filters }\end{aligned}$
$\tilde{\mathbf{u}}_{\mathrm{F}}^{*}=$ effektive Rauschspannung am Ausgang eines realen Filters.

Die Filter unserer Produktion haben folgende Dumpfungswerte: Oktavfilter 01016 (ab 1988 nicht mehr lieferbar)
$\begin{array}{ll}\text { Grunddumpfung } & 0 \mathrm{~dB} \pm 0,5 \mathrm{~dB} \\ \text { effektive Grunddumpfung } & 0 \mathrm{~dB} \pm 0,6 \mathrm{~dB}\end{array}$
Terz-0ktav-Filter 01017
Grunddampfung
effektive Grunddämpfung

$$
\begin{aligned}
& 0 \mathrm{~dB} \pm 0,5 \mathrm{~dB} \\
& 0 \mathrm{~dB} \pm 0,8 \mathrm{~dB}
\end{aligned}
$$

5.4. Inbetriebnahme

Mit dem Netzschalter O / I des Netzteils wird das Gerlat eingeschaltet.

6. Elektrische Schaltung

6.1. Rauschquelle, Bandpa β - und Regelverstitirker

Eine sehr zuverlissige Quelle fur Weißes Rauschen sind ohmsche Widerstunde. Die effektive Rauschspannung, die ein Widerstand in einem bestimmten Frequenzbereich erzeugt, ist nach Nyquist

$$
\tilde{u}_{R}=2 \sqrt{k T R \Delta f}
$$

,
mit $k=$ Boltzmannkonstante
$T=a b s o l u t e ~ T e m p e r a t u r ~$
$\Delta f=$ Frequenzbereich
$R=$ Widerstand.
Die wechselspannungsmäBige Parallelschaltung der Widerstände $R 7 / R 8$ liefert eine effektive Rauschspannung $\tilde{u}_{R} \approx 25 \mu \mathrm{~V}$. Dieses Nutzsignal wird im Bandpaßverstärker A 3 verstärkt. Dabei wird mit den Kondensatoren C 3 und C 6 die untere Grenzfrequenz bestimmt. Die obere Grenzfrequenz wird durch C 4 festgelegt. Der nachgeschaltete Regelverstärker A 4 hebt den Signalpegel so an, $d a B$ am Ausgang der Mischstufe A 6/A 7.1 stets ein Rauschsignal mit $\tilde{u}=$ konstant vorhanden ist. Die gesamte Baugruppe ist gegen HF-Störeinstrahlung abgeschirmt.
6.2. Oszillator, Misch- und Regelstufe, Filter, Endverstäarker. Stabilisierung (577 898.1)

Der Schaltkreis A 5 ist als spannungsgesteuerter Oszillator geschaltet.

Mit dem Regler $R 16$ erfolgt die Frequenzeinstellung.
Die Mischstufe mit dem Schaltkreis A 6 ist ein Multiplikator mit symmetrischen Eingängen. Die Eingangsspannungen sind $\tilde{u} \approx 10 \mathrm{mV}$. Mit dem Regler R 43 wird der Signaleingang und mit dem Regler R 33 der Oszillatoreingang symmetriert. Die Null-Unterdruckung für beide Eingänge, gemessen am Ausgang, ist größer als 40 dB . Der Mischstufe ist ein Breitbandverstärker A 7.1 nachgeschaltet. Sein Ausgangssignal wird konstant gehalten, indem über die Regelstufe mit V 1, V 2, V 4, V 8 (Mittelwertbildner) eine entsprechende Steuerspannung für den Regelverstärker A 2 abgeleitet wird.

Der Schaltkreis A 7.2 ist ein umschaltbarer Sallen-und-Key-TiefpaB. Die Grenzfrequenzen sind 200 kHz bzw. 20 kHz .

Der an der Frontplatte angeordnete Einsteller R 1 "fein" gestattet an dieser Stelle eine kontinuierliche Pegelabsenkung bis etwa -12 dB . Mit dem Umschalter S 1 (WEISS/ROSA,577 904.1) kann Rosa bzw. WeiBes Rauschen eingeschaltet werden. Bei. Rosa Rauschen wird ein entsprechend dimensioniertes RC-Netzwerk zusammen mit dem Schaltkreis A 8 zur Pegelanhebung eingeschaltet. Um hohe Scheitelfaktorwerte zu garantieren, hebt erst der Endverstärker mit A 9 und V 12/V 13 das Rauschsignal nochmals um 15 dB an.

Die positive Betriebsspannung des Rauschgenerators wird vom Schaltkreis A 1 stabilisiert. Eine genaue Einstellung der Ausgangsspannung erfolgt mit dem Regler R 2. Für die negative Betriebsspannung werden der Schaltkreis A 2 sowie der Regler R 5 eingesetzt.
Bei Strömen $\geqq 100 \mathrm{~mA}$ spricht die thermische Uberstromsicherung dieser Schaltkreise an und reduziert die Betriebsspannung.

6.3. Schalter WEISS/ROSA (577 904.1)

Mit den 4 Teilebenen des Schalters werden realisiert:

- Tiefpaßumschaltung $200 / 20 \mathrm{kHz}$
- Umschaltung WEISS-ROSA
- Einschaltung der Rosa-Filtergrunddämpfung bei WEISS, R 1 bis $R 3$ bilden das entsprechende Dämpfungsnetzwerk.
6.4. Ausgangsspannungsteiler "grob" (577 907.4)

Der Ausgangsspannungsteiler ist nach dem Endverstärker angeordnet, damit bei größeren Pegeländerungen auch eine eventuell vorhandene Offsetspannung entsprechend verändert wird. Die Subleiterplatte enthält nur die Schaltebene des Schalters.

Der Rauschgenerator arbeitet wartungsfrei. Treten Storyugen auf, die vom Anwender nicht selbst behoben werden können, ist der Rauschgenerator an das Herstellerwerk oder - im Ausland an die zuständige Service-Werkstatt einzusenden. Kleinere Storungen lassen sich vom Anwender selbst beseitigen. Die nachfolgend angegebenen Hinweise dienen zum Auffinden der defekten Baugruppe und eventueller Stbrungen in der Verdrahtung oder an den Bedienungselementen.

7.1. Uberprlufen des Signalweges

Bei eventuell auftretenden Fehlern ist zuerst der Signalweg an Hand der Stromlaufplane zu verfolgen. Dazu wird ein elektronisches Voltmeter (mbglichst mit Effektivwertanzeige) oder ein Oszilloskop, benutzt.

Achtung! Der Betrieb des Rauschgenerators außerhalb des Systemgehäuses darf nur uber ein Adapterkabel erfolgen. Die separate Masseleitung (Schutzleiter) ist aus. Sicherheitsgrunden vor der Inbetriebnahme unbedingt in die zentrale Massebuchse des Systemgehäuses zu stecken.

Der zu Uberprifende Signalweg ist:
Ausgangsbuchse $X 1$
Ausgangsteiler "grob" (Stellung 0 dB)
Eingang Endstufe (C 38)
Schalter WEISS/ROSA 20 kHz , WEISS
Dämpfungseinsteller "fein" (Anschluß X 2), Rechtsanschlag
Können die in der nachfolgenden Tabelle 1 angegebenen Pegelwerte nicht gemessen werden, liegt ein Fehler in der Spannungsstabilisierung, in der Mischstufe, im Oszillator, in der Regelstufe mit dem Regelverstarker, oder im Bandpaßverstärker vor.

In diesem Falle (außer Spannungsstabilisierung) sollte der Rauschgenerator an den Hersteller oder die zuständige Service-

Werkstatt eingeschickt werden. Nach der Reparatur dieser Schaltungsteile sind umfangreiche Einstell- und Prufarbeiten notwendig, um die technischen Daten zu garantieren.

Tabelle 1

	$\mathrm{HU}_{\mathrm{X}}^{1}$	$\underbrace{577}_{x-6} 907.4$	$\begin{gathered} 577{ }_{C} 898.1 \end{gathered}$	${ }^{577} \underset{x}{904.1}$	Meßpunkt (10)
WEISS 20 kHz	1 V	1 V	0,145 V	76 mV	76 mV
$\begin{aligned} & \text { WEISS } \\ & 200 \mathrm{kHz} \end{aligned}$	1 V	1 V	0,145 V	27 mV	27 mV

Zur einfachen Uberprüfung von Schalter und Filter WEISS/ROSA sowie der Endstufe kann die Brücke X 6/X 7 aufgetrennt werden und in $X 7$ eine Spannung U_{e} mit $f=2 \mathrm{kHz}$ eingespeist werden. Der Dämpfungseinsteller"fein" steht auf Rechtsanschlag.
Es gelten dann die Werte nach Tabelle 2.

	X 7 U_{e}	Meßpunkt (10)	577 C 38	898.1 XU
WEISS 20 kHz	300 mV	300 mV	145 mV	1 V
WEISS 200 kHz	850 mV	850 mV	145 mV	1 V
ROSA 200 kHz	500 mV $(2 \mathrm{kHz})$	500 mV	145 mV	1 V

7.2. Stabilisierungsschaltung V 1 bis V 10 (577 898.1)

Die vom Netzteil 04003 abgegebenen unstabilisierten Versor gungsspannungen sind zu uberprufen, ebenso die stabilisierten Ausgangsspannungen der Stabilisierungsschaltung.

Durch Ändern der Eingangsspannung bzw. der Netzspannung im angegebenen Toleranzbereich und gleichzeitige Kontrolle der Ausgangsspannung kann der Stabilisierungsbereich der Schaltung uberpruft werden. Die sichere Funktion der Uberstromsicherung kann durch Anschalten eines zusëtzlichen Lastwiderstandes $R \leqq 100 \Omega(4 \mathrm{~W})$ getestet werden.
8. Lager- und Transportbedingungen

Lagerung und Transport dirfen in Originalverpackung nur innerhalb eines Temperaturbereiches von $-25{ }^{\circ} \mathrm{C}$ bis $+55^{\circ} \mathrm{C}$ erfolgen. Die Bedingungen unterteilen sich in die folgenden Bereiche:

Erläuterungen zu Bild 7
1 Leiterplatte, vollständig, 577898.1
2 Kappe 515027.4
3 Leiterplatte 2577904.1
4 Leiterplatte 3577907.4
5 Dämpfungseinsteller "fein" R1 807675.0
6 Steckerleiste X1/809 526.3
7 HF-Steckdose X1/813 474.5

Bild 7
RAUSCHGENERATOR 03004
Seitenansicht
Position der Bauelemente und Baueinheiten
Рис. 7
ГЕНЕРАТОР ШУМА 03004
Вид сбоку
Расположение деталей и узлов
Fig. 7
03004 NOISE GENERATOR
Side View
Component Location and Sub-Assemblies

Diagramm

Darstellung der Ubersohreitungawahrsoheinliohkeit w als Funktion der normalverteilten Momentan-Amplitudenwerte $\frac{u}{s}$ bei Rausohen.

Ansicht Bestückungsseite
Вид со стороны оснащения
View of Insertion End

Position der Bauelemente
Расположение деталей
Component Location

Erlăuterung der Abkarzungen

DS	Drehschalter	KS－Kondensator	Polystyrol－Kondenastor
DWF	Drahtwideratand，feat	KT－Kondensato	Polyester－Kondensator
DWV	Drahtwiderstand，verlănderbar	MKC－Kondensator	Polycarbonat－Kondensator，
SPTLG	Spannungsteiler，logarithmisch		metallisiert．
SPTLIN	Spannungeteiler，linear	MKL－Kondensator	Lack－Kondensator，metallisiert
STT	Stromteiler	MKT－Kondensator	Polyester－Kondensetor，
SWF	Schichtwiderstand，fest		metallisiert
SWV	Schichtwiderstand，veränderbar	T－Kondensetor	Tantal－Kondensator
WN	Widerstandenetzwerk		

Hinweise
－Tritt die gleiche（Schaltteil－）Kurzbezeichnung mehrmals hintereinander auf，z．B．bei
Widerständen，so handelt es eich um Abgleichbauelemente．Der zuerst genannte Wert ist
der Sollwert．
－Sind zur Schaltteilliete weitere Erlauterungen notwendig，so werden an den betreffenden
Stellen，vorzugsweise in der Spalte＂Bezeichnung＂，Hinweise auf Fußnoten gegeben．Die

Пояонөние сокраменй

DS	Il
DWF	Проволочнй резистор，постоянни
DWV	Проволочннй резиотор，переменннй
SPPLA	Делитель напряжения，логарифе．
SPILIN	Делитель напряжения，лине\＃ний
STT	Делитель тока
SWP	Іленочнни резистор，постояннни
SWV	Пленочннй резистор，переменний
WN	Резисторная охема

KS－Kondensator
KT－Kondensator
MKC－Kondensator
MKL－Kondensator
MKT－Kondensator
T－Kondensator

Полистироловнй конденсатор
Полиәффирнй конденсатор Поликароонатннй конденсатор． метеллияированнни
Лакопленочнни конденсатор， металлизированннй Полияфирннй конденсагор， металлизированннй Танталовн⿱⿱亠䒑日\zh20 конденсатор

Перевод всех других немецких понятий содерхитая в прилагаемом перечне слов．

$\mathrm{y}_{\text {казание }}$

－Воли в спецификаций деталей охемн вотречаются одинаковне краткие обозначения，сдедуация одно за другим，напр．，у резисторов，то ато уравновешиваккцме адементн．Первое указанное значение является номинальннм．
－Другие необходимне пояснения к спепификапии детален，стояиие преидуцественно в графе ＂обозначение＂，приводягся в сносках в конце спецификации．

1

Explanatione and Abbroviations Uaedis

DS	Rotary ewitch
DWF	Wirewound resistor，fixed
DWV	Wirewound resistor，variable
SPTLG	Voltage divider，logarithmic
SPTLIN	Voltage divider，linear
STT	Current divider
SWF	Film resistor，fixed
SWV	Film rosietor，veriable
WN	Resistor network

KS－Kondeneator KT－Kondeneator MKC－Kondensator	
	P
	Polycarbonate capacitor metallized
MKL－Kondens	Lacquer film capacitor
	metallized
MKT－Kondensator	Pre？＊r sa
	Mic．．cilized
T－Kondensator	Tantalum capa

As to the tranelation of the other German torme，refer to the list included． NOTES
－When the same Ref．Designation of componente occurs several times in aucceseion，e．g．， for resietors，this denotes adjusting elemente．The value given firat is the nominal value．
－When further explanatione of the list of circuit elemente are needed，reference is made to footnotes on the corresponding places，preferably under the column＂Description＂． The footnotes themesives are included at the ond of the list of circuit．elements．

RLUSOHGENERATOR 03004

A 1 LEITERPLATTE, VOLLST, 577898.1

puヨ uo! ұјеsu! „о мө! Λ
 иetrietr өинөжоиоиэвd

1.868 LLS

[^0]: 1 Schalter WEISS/ROSA
 A10-S1

[^1]: 1) Zahlenwert 200 auf der Frontplatte nicht dargestellt.
