OLYMPIA SYSTEM BOSS

BAL LANGUAGE AND FILE SYSTEM

REFERENCE MANUAL

B. 1006 A

PRELIMINARY ISSUE - OCTOBER 1980

PREFACE

PURPOSE

This manual provides you with the descriptions and data you

need to use the BOSS Business BASIC Language (BAL) to develop
your applications programs. This document provides a descrip-
tion of the simple, nowerful BAL commands; describes rules
for the proper usage of the language; and includes program-

ming examples.

THE LANGUAGE

One of the important characteristics of a program is that it
must be written in a language that the computer can
understand. ALl computers have a very elementary language
called machine language which requires the use of long Llists
of primitive instructions. The machine language differs with
each manufacturer and can even differ from one line of compu-
ters to another within the same manufacturer's products.

Darmouth College developed a language having very simple gram-
matical rules that could be learned quickly. This Llanguage

has come to be known as BASIC. However, BASIC does not have
effective instructions for the entry of business-oriented in-
formation and control of display formats for the results.

This extended version of BASIC (called BAL) makes more effec-
tive use of the entire computer system and provides the ne-
cessary tools to program in a commercial environment,.

Features of BAL

o Designed to be used easily by inexperienced
programmers.,
o Includes enhanced instructions for input/output

which are better adapted to the problems posed in a

business environment.
0 Performs arithmetic operations to fourteen-place

accuracye.
o Has a flexible way of handling data files.

Virtual Memory

The information handled by the computer can be stored in the
central memory or in peripheral memory units such as mini-
floppy disks or large disks. Central memory units are charac-
terized by very fast access times, while peripheral units can
contain much Larger volumes of data but have a slower access
time. A recent advance in computer technology is the concept

of virtual memory. Virtual memory systems allow you to write
programs without regard for the amount of central memory
available. You can manipulate data variables stored on peri-
pheral units as easily as if they were stored in central me-
mory == only the access time changes. Program segments
themselves may be kept on a peripheral unit and recalled when

needed.

Programming Methods

There are many possible methods for entering your program in-
to a computer and outputting the results. The BAL system pro-
vides an easy-to-use conversational entry method for your
programs and data, via the keyboard with the information dis-
played on a CRT screen. At the same time, the information is
recorded on either a minifloppy or a large disk.

Your data can be output to a line printer, the CRT display,
or to one of the disks.

Conventions

Notation conventions used in this document are:

Brackets [J surround optional fields in instruction
descriptions. The brackets are not to be typed when entering
the instruction into the computer.

The symbol b denotes a required blank.

The symbol cr denotes a carriage return.

i

OLYMPIA SYSTEM BOSS

BAL LANGUAGE AND FILE SYSTEM REFERENCE MANUAL

TABLE OF CONTENTS

Paragraph Title Page
CHAPTER 1. INTRODUCTION
15 Introduction to the BAL Language 1-1
1.1.1 Example 1 1-1
1.1.2 Example 2 =-Using a Subroutine 1-4
CHAPTER 2. THE STRUCTURE OF A BAL PROGRAM
2.1 Required Structure 2-1
2.2 Program NAME 2-1
2 =9 Declarations 2-2
2.4 Body of the Program 2-2
2 4.1 Line Numbers 2-2
2 .4.2 Comments 2-2
CHAPTER 3. DESCRIPTION AND DECLARATION OF VARIABLES
3.1 Introduction 3-1
3.2 The Variables 3-2
3.2.1 General 3=-2
3.2.2 Variable Names 3-3
3.2.3 Types of Variables 3-3
3.2.3.1 Short Numeric Variables 3-3
K . . P Long Numeric Variables 3=-4
3.2.3.3 Character String Variables 3-4
3.3 Constants 3-4
3.4 Field Instruction 3-5
3.4.1 Equivalencing Variables 3-7
3.5 DCL Instruction 3-7
3.5.1 Remarks 3-9
3adal Sequence of Declaration Instructions 3-10
3.6 Handling Arrays and Matrices 3-10
3.6.1 Arrays 3-10
3.6.2 Matrices 3-11
3.6.3 Declaring Arrays and Matrices 3-11
3.6.4 Examples 3-12

idd

Paragraph

TABLE OF CONTENTS, CONT'D

Title

N W W
a 8 a
O TN -

€ & o ¢ 8o ® 8 € 8 88 & ® 8 8 8 8 8 &
" s @ e o 8 & o o o &
O~NOWVNPWN -

000000 00 0000V NNNNNNNSNNOWVHSTUWN=

(IR IV IRV, IV, IRV, IV, RV, RV, [V, [V, RV, RV, RV, [NV, [NV, IV, RV, IV, RV, RV, RV, |

O UN =

.
.
WN -

(o o e e Yo e e Yo)
e

°
SFPHPUNDNNNNN =
e

[]
A

CHAPTER 4. ASSIGNMENT INSTRUCTION

Introduction

Syntax

Numeric Expressions
Logical Expressions
Arithmetic Expressions
Function Evaluation

CHAPTER 5. PROGRAM FLOW AND CONTROL INSTRUCTIONS

General
GOTO Instruction
OF...G0TO Instruction
ON...GOTO Instruction
IF...G0TO Instruction ‘
IFee.THEN...ELSE InNnstruction
FOR...NEXT Instruction
Simple Loops
Effect of the Instruction FOR/NEXT
Step of the Loop (STEP)
Index Value v
Examples
Abnormal Conditions
Successive Loops
Nested Loops
Subroutines
General Structure
GOSUB Instruction
(0OF...GOSUB Instruction
RETURN Instruction
Remarks
Nested Subroutines

CHAPTER 6. CONVERSATIONAL DATA ENTRY

General
ASK Instruction
Simple ASK Instruction
ASK Instruction - General Format
Examples of ASK Instruction
MASK Instructions
Formats
Examples

iv

Page

!
WMNNNN =2

Ll IR R AR K
1

!
=2 20000 NNNOOCOOOOVITWUWN

-
(o Mo e

(VL RV, RV, IRV, IV, RV, IRV, IV, BV, RV, RV, RV, RV, RV, RV, RV, IV, [V, RV, BV, |
l i
-y
o

!
-
N

5-12
5-13

|
200 NNIN =2

1o T e e Je Ne Je e e
i

TABLE OF CONTENTS, CONT'D

Paragraph Title Page

CHAPTER 7. DATA FILES WITHIN THE PROGRAM

Introduction

DATA Instruction
Pecimal Constants
Character Strings
Hexadecimal COnstants

READ Instruction

RESTORE Instruction

NNNNNNSN
[] []
HSUNNNNIN -
[)
W N -
I

e 0]

[]
N~NSNNNNSN
U
SHENVNNNNN =2

CHAPTER 8. PRINT INSTRUCTION

8.1 General 8-1
8.2 Simple PRINT Instruction 8-1
8.3 PRINT Instruction - General Form 8-2
8.4 Format Control 8-2
8.4.1 Imbedded Format Control 8-2
8.4.2 Fixed Format (FMT) Instruction 8§-3
8.4.3 Variable Format (FM) Instruction 8-4
8.4.4 Format Control Characters 8-4
8.4.5 Examples Illustrating the OQutput Format 8-7
Elements for Numeric Variables
8.4.6 Examples Illustrating Formats for Character 8-10
String Variables
CHAPTER 9., INPUT/OUTPUT PORT INSTRUCTIONS
9.1 General 9-1
9.2 Input Port 9-1
9.3 Output Port 9-1
CHAPTER 10. SEGMENTATION
10.1 General 10-1
10.2 Segment Declaration Instructions 10-1
10.3 Calling Segments 10-2
10.4 Return from a Segment 10-3
10.4.1 Example 1 10-3

TABLE OF CONTENTS, CONT'D

Paragraph Title Page

CHAPTER 11. MISCELLANEOUS INSTRUCTIONS

11.1 WAIT Instruction 11-1
1.2 PAUSE Instruction 11-1
11.3 STOP Instruction ' 11-1
11.4 |

OP ADR 11-2

CHAPTER 12. FUNCTIONS
12.1 General 12-1
12.2 Mathematical Functions 12-1
12.2.1 Function ABS(v) 12-1
12.2.2 Function INT(v) 12-1
12.2.3 Function MOD(B,C) 12-1
12.2.4 Function ROUN(Cv,N) * 12=-2
12.2.5 Functions FIX(x) and FP(x) 12-2
12.2.6 Function SGN(v) 12-2
12.2%7 Function CONV(v) 12-3
12.3 String Functions 12-3
12.3.1 Function LEFT (A N) 12-3
12.3.2 Function RIGHT (A, N) 12-3
12.3.3 Function LENCA) 12-4
12.3.4 Function INDEX (A,B) 12-4
12.3.5 Function INSTR(A,B,N) 12-4
12.3.6 Function SUBSTR(A,N1,N2) 12-5
12.3.7 Function INCLUD(N,B,L[N1] 12-5
12.3.8 Function VAL(CA,N) 12-5
12.3.9 Function STRN(X) 12-6
12.3.10 Function TRANCA,B,N,C) 12-6
12.3.11 Function INV(A) 12-6
12.3.12 Function GENER(N,A) 12-6
12.3.13 Function SPACE(B) 12-7
12.3.14 Function DATE(N) 12-7
12.3.15 Function SHR(A) 12-7
12.3.16 Function SHL(A) 12-8
12.4 Miscellaneous Functions - 12-8
12.4 .1 Function PEEK(A) 12-8
12.4.2 Function POKE(N) 12-8
12.4 .3 Function VPTR(A) - Variable pointer 12-9
CHAPTER 13. DISK ACCESS FEATURES
13.1 General 13-1
13.2 Assign 13-1

v

TABLE OF CONTENTS, CONT'D

Paragraph Title

13.3 10 Instruction == Direct Access to a Support
Device

13.4 LOAD Instruction

13.5 CALL Instruction

13.6 CHAIN Instruction

CHAPTER 14.

INTRODUCTION TO FILE MANAGEMENT SYSTEM

14 .1
14.2
14.2.1
14.2.2
14.3
14.4
14.5
14.5.1
14.5.2
14-6

®
NOWVMSWN -

® ¢ @ & ® 8 85 08 o & &8 ®
s 0 e o s o 8 & ®
OOV WN = NN -

it oD ed wd D D =D D D D ed oD eh ed D D D e oD e h oD) D

ARV RV RS RV IRV, RV, RV, RV, RV, RV, RV RV RV, RV RV RV, RV, RV, RV, RV, RV, |}V,
[]

ViUV PP UWUWUWNNNNNNNN -
]

)

~
o

General

File System General Characteristics |
General Types of Operation Performed
Status/Error Codes

Description of Random Access File System

Description of Sequential Files

Description of Indexed Sequential (ISAM) Files
Characteristics of the ISAM FlIle
Characteristics of the ISAM Record

Definitions

CHAPTER 15, FILE SYSTEM COMMANDS

General

Common File System Instructions
ASSIGN
Create a File == CFILE
Open a File -- OPEN
Delete a File -- DFILE
Rename a File == RENAME
Extend a File == EXTEND
Close a FIle =-- CLOSE

Random FIle Instruction
Field Instruction
ASSIGN - Random File System
Example of Random File Instructions
Sequential File System Instructions
READ a Sequential Record
BACKSPACE in Sequential File
WRITE a Sequential Record
Example of Sequential File Instructions
Remarks
Sequential Files for Magnetic Tape
Indexed Sequential File System Instructions
ASSIGN Instruction
Normal mode
Copy mode

@
N =

vii

Page

13-2

13-4
13-5
13-7

14-1
14-2
14=-2
14-2
14-3
14-3
14-4
14=5
14=5
14-6

N I I N I
VVVVOINOCOOOOPVNEEPTUWWN- -

- ed D d D D D D ed e D cd b D D -
ARV RV IRV RV RV, RV, RV, RV, RV, RV, RV, RV, RV, BV, IV, |

-2
(V)]
|

15-10
15-10
15-11
15-11
15-12
15-12
15-13

TABLE OF CONTENTS, CONT'D

Paragraph Title

15.5.2 Create an Indexed Sequential File == CFILE

15D «3 Inserting a New Item == INSERT

15.5.4 Read arn Indexed Sequential Item -- SEARCH

15.5.5 Delete an Item -- DELETE .

15.5.6 Sequential Read in ISAM File =-- UP & DOWN
Instruction -

15.5.7 Modify an Item =-- MODIF

15.5.9 Example of Indexed File Instructions
CHAPTER 16. BAL TRANSLATOR & EXECUTOR

16.1 General

16.2 BAL Translator - TR

16.3 BAL Executor - EX

APPENDIX A, BIBLIOGRAPHY

APPENDIX B, ASCII CODES

APPENDIX C.

BAL AND FILE MANAGEMENT SYSTEM ERROR CODES

General

Translation-Time Errors

Execution Time Errors

File Management System Status/Error Codes

OO0
[]
HSWN 2

viii

Page

- d D -
vivtuy it
i
BN N T P W'Y
o Je NV, B S ¥

15-18
15-19

- e
ONONO
|
W -

s NeNelNe
|
VI (N =2 2

CHAPTER 1. INTRODUCTION

7.7 INTRODUCTION TO THE BAL LANGUAGE

In order for the computer to perform the desired
calculations, you must provide it with the calculation method
to be used. It must be in a form the computer can understand,
and this form has come to be known as the BAL Llanguage.

The "sentences" in this language consist of a command (key)
word of 1-6 letters, followed by any other required or option=
al information. BAL is easy to learn because a small number

of command words is sufficient for most programming tasks.

One of the most important features of any programming lan-
guage is its input/output structure. The objectives of
input/output (I/0) are:

Input: The supplying of data to the computer for
program execution,

Output: The results of the calculations presented in
a format desired by the user.

The BAL 1/0 structure has been designed to facilitate the

conversational writing of management applications programs by
relatively inexperienced personnel. In general, data is ente-
red on the keyboard and output to the CRT display or printer.

To illustrate BAL, consider the following examples. Their
purpose is to illustrate some of the instructions, which are
discussed beginning in Chapter 2.

Note that Appendix C is a Llist of all MICRAL BAL commands in-
dexed to the page where they are described.

1.1.1 Example 1

The first example consists of dividing two numbers. An execu-
table program can be written as follows:

INSTRUCTIONS FUNCTION CHAPTER
050 PROGRAM "“DIVISION" Program name 1
100 pCL N,D,Q Declaration of variables 3
150 SEGMENT O | Segment number 12
200 REM DIVISION Remark 1
250 ASK=1: "NUMERATOR"=N Conversational Input 8
300 ASK=1: "DENOMINATOR"=D Instructions 8
350 REM CALCULATE QUOTIENT Remark 1

INSTRUCTIONS FUNCTION CHAPTER

400 @ = N/D Assignment instruction 4
500 PRINT=1: "QUOTIENT",Q Output of Data 10
600 GOTO 250 Branch Instruction 5
1000 ESEG O End Segment 12
1110 END End of Program 1

Note that the instructions of this program are numbered in
ascending order. This numbering is optional.

For the time being, skip the first three instructions and
Look at instructions 200, 250 and 300. Instruction 200 is a
remark (comment) which has no effect on the program, but per-
mits you to add comments to explain various program
operations.

Instructions 250 and 300 are conversational instructions to
input numerical information. The instruction ASK=1: takes the
information which is input and stores it in memory. For
example, in executing instruction 250, the computer will dis-
play on the CRT screen the data in quotation marks, i.e., it
will print NUMERATOR. Then, it will wait for you to enter a
value for the numerator. The computer controls each entry. If
the character isn't a number, the computer will not accept
it. At that moment, you will hear a Llight "beep'" to indicate
that there has been an error. Similarly, in executing in-
struction 300, DENOMINATOR will be displayed on the screen
and the computer waits for your input.

Instruction 400 takes the value which was read in by instruc-
tion 200 and assigned the variable N, then divides it by the
value read in at 300 which was assigned the variable, D. The
result of the division of the variable N by the variable D is

placed in Q.

Notice that the character used to indicate division is / (the
slash). If the instruction involved addition, it would be +
(plus), subtraction - (minus), or multiplication *
(asterisk). For example, LET C = B * D means multiply the va-
riable B by the variable D giving the result C.

Instruction S00 (PRINT=1:...) enables the computer to print
the results. PRINT followed by the names of the variables
that one desires to print; here the data enclosed in quotes
is printed, then the value of @ will be printed. Thus if Q
were computed to be 2000, the printout would be:

QUOTIENT 2000

1=

The 1 after PRINT indicates that the data is to be written on
the video screen. If, ir piace of the 1, you had put 2, the
output would be on a Lline printer. In the instruction ASK=1:,
the number indicates that it will use the video screen. BAL
does not allow the user to change theses device numbers.

Instruction 600 is interpreted as a transfer to instruction
250. The computer is going to branch to instruction 250 and
execute it. Then, it is going to continue normally with the
instructions that follow instruction 250; i.e. 300, then 400,

etc.

Instruction 600 could be changed by:

600 IF @ < 100 GOTO 250
700 s ® & 5 » & 0 @

The program would then be:

050 PROGRAM "DIVISION"
100 bCL N,D,Q

150 SEGMENT O

200 REM DIVISION

250 ASK=1: "NUMERATOR"=N
300 ASK=1: "DENOMINATOR"=D
350 REM CALCULATE QUOTIENT
400 LET @ = N/D

500 PRINT=1: "QUOTIENT",Q
600 IF @ < 100 GOTO 250
700 STOP

1000 ESEG O

1110 END

In this case, if the value of the variable @, (that is, the

result of the division) is less than 100, the program is
going to continue from 250. Otherwise, (i.,e., if Q@ is greater
than or equal to 100), it will continue execution at instruc-

tion 700.

The IF-type command is called a conditional instruction. It
also exists under another form:

600 IF @ < 100 THEN 250 ELSE 700

This is interpreted as: if (IF) the value of @ is less than
100, then (THEN) the program continues from instruction 250.
However, if the value of @ is greater than or equal to 100,
the program continues with instruction 700 (ELSE).

Modification of the previous program then gives:

050 PROGRAM "DIVISION"
060 FIELD=M
100 bpCL N,D,Q

150 SEGMENT O

200 REM DIVISION

250 ASK=1: "NUMERATOR'"=N

300 ASK=1: "DENOMINATOR"=D

350 REM CALCULATE QUOTIENT

400 LET Q@ = N/D

S00 PRINT=1: TABV(2), "QUOTIENT N/D", Q
600 IF @ < 100 THEN 200 ELSE 700
700 SsTOP
1000 ESEG O
1100 END

Note that instruction 500 has also been changed. TABV(2) in-
structs the display to tab down two lines prior to printing

the quotient.

1.1.2 Example 2 - Using a Subroutine

Suppose that a customer, C, wants to buy something. The ini-
tial price is P. If the order is 10 or more units, he is gi-
ven a 10% discount on the purchase price, M. In the case

where the number of units ordered is 25 or greater, the dis-

count is 20X%.

To establish the price for client C, the salesman has to car-
ry out a certain number of elementary operations == one after
another: '

1. Ask for the name of the customer.
2. Ask for the quantity ordered -- Q,
3. Ask for the unit price =-- P,
4., Calculate the price as
M= Q@* P
5. See if the quantity ordered is 25 or more. If

yes, then calculate the reduction of 20X as
R =M * 0.20

and subtract the reduction from the price as
M=M-R

and then go to the next client.
6. Otherwise, see if the quantity ordered is 10 or
more. If yes, then calculate the 10% reduction
as
R=M=* 0.10

and subtract the reduction from the price as
M=M-R

and go to the next client.

If we write a BAL program for this sequence of operations we
have:

PROGRAM STATEMENT EXPLAINED IN CHAPTER

100 PROGRAM "PRICE"
105 DCL €$=20,Q,P,R,M
106 SEGMENT O

110 ASK=1:
120 ASK=1:
130 ASK=1:
140 LET M
150 IF @ <
152 LET R
154 LET M
156 PRINT=
158 GOTO 1
160 IF Q@ <
162 LET R
164 LET M
1766 PRINT=
168 GOTO 1
170 PRINT=
180 GOTO 1
190 STOP

400 ESEG O

410 END

Note that
ment once
This is sh

Note that
you put a
reduction.

TABV(2), "CUSTOMER NAME" ,=C
TABV(2), "QUANTITY'=Q
“"UNIT PRICE"=P
= Q%P
25 GOTO 160
= M * 0.20
= M-R
1: TABV(2), C,Q_,P_ M
10
10 GOTO 170
= M *x 0.10
= M-R
1: TABV(2), C,Q,P_M
10
1: TABV(2), C,a,P, M
10
we simplify the program by writing the PRINT state-

and branching to it after statements 154 and 164.
own below.

140 LET M = Q * P
150 IF Q@ < 25 GOTO 160

152 LET R = M * 0.20

154 LET M = M - R

156 GOTO 170

160 IF @ < 10 GOTO 170

162 LET R= M * 0.10

164 LET M = M - R

170 PRINT=1: TABV(2), C,Q,P M
180 GOTO 110

190 ® O o 6 ® &0 00000 0 008

instructions 152, 154 and 162, 164 are identical if
variable, for example R1, to designate the
Then the instruction sequence becomes

M * R1
M *» R1

152 LET R
162 LET R

To avoid rewriting the identical set of instructions, BAL
Lets you create a sub-proagram or subroutine. Consider the
example:

100 PROGRAM "PRICE"

105 pCcL C$=20,Q,P,R,R1,M

106 SEGMENT O

110 ASK=1: TABV(2), "CUSTOMER NAME",=C
120 ASK=1: TABV(2), "QUANTITY"=Q
130 ASK=1: "UNIT PRICE"=P

140 LET M = Q%P

150 IF @ < 25 GOTO 160

152 LET R1 = 0.20

154 GOSUB 300

156 GOTO 170

160 IF @ < 10 GOTO 170

162 LET R1 = 0.10

164 GosuB 300

170 PRINT=1: TABV(2), C,Q,P,M
180 GOTO 110

190 STOP

00 LET R
Subroutine)310 LET M
320 RETURN

400 ESEG O
410 END

1

M = R
M - R

Observe that the subroutine was composed of instructions that
were jidentical to those in the preceding program. After wri-
ting these instructions, we put RETURN which indicates the
end of the subroutine and orders the computer to return to
the first executable instruction after the one which called
the subroutine.

To call a subroutine, use the instructions GOSUB, followed by
the number of the Line which began the subroutine. Notice

that the price reduction in our program example was determi-
ned before the subroutine was called.

1=6

CHAPTER 2. THE STRUCTURE OF A BAL PROGRAM

2.1 REQUIRED STRUCTURE

As illustrated in the examples in Chapter 1, every BAL pro-
gram requires the following structure:

Elements Gf The Program Instructions

1. First instruction must be the PROGRAM "NAME"
program name.

2. Declarations =-- a group of FIELD= cecso
instructions naming and DCL vt 55 me =
declaring all variables used i om s DS ®
in the program. FIELD=vceaow

DCLacecsann

3. The body of the program, which SEGMENT O
consists of one or more segments, .
each of which begins with SEGMENT n .
instruction, ends with ESEG n, .

ESEG O
Each segment contains a body of SEGMENT 4
instructions which perform various .
program functions. The variables .
are common to all segments. ESEG 4
Segment 0 is required, others are SEGMENT k
optional (up to 16 total) and .
can appear in any order. .
One segment can call another, Llike .
a subroutine, but one segment .
cannot refer to instructions inside .
another segment. .
ESEG K
4. The END statement. END

2.2 PROGRAM NAME

The first statement of every BAL program must begin with the
keyword PROGRAM, followed by the user-assigned program name
of 1 to 15 characters, enclosed in parentheses,

Example: PROGRAM "SAMPLE"

2.5 DECLARATIONS

The instructions which name and declare the program variables
follow the program name. ALl variables used in a program must
be declared prior to the appearence of a SEGMENT n statement.
The variable declaration instructions are described in detail

in Chapter 3.

The declared variables are common to all segments -- and can-
not be declared local to a single segment. Also appearing
prior to the SEGMENT 0O statement, are the FIELD statements
which define the types of memory that support the variables
being declared. BAL allows three types of memory to be used:
the central memory and the virtual memory of the minifloppy
disks and the large hard disks.

2.4 BODY OF THE PROGRAM

The body of a BAL program consists of one or more segments,
each of which includes a group of instructions. Every program
must include a Segment 0; other segments are optional. See
Chapter 10 for complete details on segmentation, including
instructions which allow one segment to transfer control to

another.

Instructions are constructed as detailed in following
chapters. The maximum length of an instruction Lline is 255
characters. Blanks may be used freely within instructions to
improve readability, except for the equal (=) sign which may
not be preceded by a blank.

2.4.1 Line Numbers

Within a segment the user may assign Line numbers to the BAL
instructions. Line numbers are optional, but if they are
used, must be in ascending order within the same program
segment, and be in the range from 1 to 9999. Note that Lline
numbers in one segment are independent of line numbers in any

other segment,

2.4.2 Comments

The importance of comments in a program cannot be
over-estimated. The extra time required to document a prcgram
as it is written is repaid whenever questions arise, or chan-

ges are contemplated.

BAL provi

1.

des four ways to include comments within a program:

The REM Instruction - Allows the user to enter an

‘entire Lline of comments. When REM is typed as the

EXAMPLES:

keyword of an instruction line, everything following
(to the next carriage return) is considered to be a

comment by BAL.

* Instructicn - Has the same function as REM, but

may be used to produce a neater listing, especially
when blank Lines are needed in the Llisting for
clarity.

« Instruction = Functions the same as the asterisk,

but also forces an advance to top-of-form operation,
so that the comment will always appear at the top of
a printed Llisting page. This is useful in placing
page headings on your Llistings.

;s construct - The semicolon can be typed on a Lline

to the right of a statement, then followed by a
comment. Everything entered on a line after the semi-
colon is considered by BAL to be a comment.

PROGRAM "EXAMPLE"
REM VARIABLE DECLARATIONS FOR INDEXES

pcL A,B,C,D, D&H,D5#,D6#

»
*
« THIS COMMENT WILL APPEAR AS THE TOP
LINE OF A PAGE.
DClLuceeocacccncnnnas
SEGMENT O
100 A= 2.0 sInitialize A

2-3

~

CHAPTER 3. DESCRIPTION AND DECLARATION OF VARIABLES

3.1 INTRODUCTION

BAL, Like all programming languages, uses an assortment of
characters to communicate with the systenm.

To communicate the characters to the computer, one uses a
type-writer-like keyboard. After processing, the computer di-
rectly transmits the information back to the CRT screen, the
printer, or to the disk.

The character set used for BAL is:

o 26 characters of the alphabet:
A BCDETFGHTIUJIKLMNIOPAQRS STUVHEKIXY!Z

o 10 numeric characters:
0123 45 67 89

o special characters which are subdivided into:

o symbols of operation
- subtraction
+ addition
* multiplication
/ division

o parentheses
(Left parenthesis
) right parenthesis

o comparison symbols
equal

< less than

> greater than
<= less than or equal
>= greater than or equal
<> not equal

o punctuation characters
. period

comma

semi-colon

question mark

colon

s Ve

witig,

o other special characters
' apostrophe
" quotation

dollar sign

percent

at

and

number

0D

The user should take care to distinguish:

o The number zero and the letter 0; usually the zero
will have a slash through it, but there is no strict

rule about it.
o The number one and the letter I.

The blank character (or space) will be represented by a blank
or by the symbol }.

3.2 THE VARIABLES

3.2.17 General

A variable is capable of taking on different values during
the execution of a program. In the computer, the variable is
assigned a memory location. The contents of the location can
change as various operations use it.

In the case of a constant, it too is assigned a memory loca~
tion but the contents remain unchanged throughout the Lifeti-
me oftthe program.

The instruction
100 LET Y = X

places the numeric value located in the X location in the Y
Location as well. The value will still remain in the X
Location, it has merely been copied.

There was to be a name for each location; and in the program,
you Wwill refer to the contents by the variable name.

ALL variables must be declared at the beginning of the
program. Detailed information on instructions for declaring

variables is found in Chapter 4.

3.2.2 Variable Names

The name of the variable can be:

o A single alphabetic éharacter (A through 2, O
excluded).

o An alphabetic character (A through Z, 0 excluded)
followed by a single digit number (4 to 9).

This allows 25 x 10 or 250 variable names. Note that A and
A, B and B, etc. are the same variable names; whereas A and
A1, B and B1, etc. are different variables. The following va-
riable names are valid:

B or Bf Cactually the same variable name)
Cé
D9
K
w3

The names of the following variables are invalid:

A01 - two digits only

B12 - two digits only
01 - alphabetic 0 not allowed
04 - variable name must begin with alphabetic

character
1A - name may not begin with a numeral

3.2.3 Types of Variables

BAL uses three kinds of variables:
o Short numeric variable (type 1 or type 2)

o Long numeric variable
o Character string variables

3.2.3.1 Short Numeric Variables

These are integer variables of two types:

o Type 1, whose range is =128 < x < 127
o Type 2, whose range is -32768 < x < 32767

These variables allow for rapid calculations. The space occu-
pied in memory is 1 character or byte for type 1 and two cha-
racters or bytes for type 2. To define a variable of type 1,
the variable name must be appended with the character # in
the BCL statement; for type 2, with the character X. Hote
that this suffix is used with the variable only when it is
defined, (See 3.5 for an explanation of the DCL statement.)

3-3

EXAMPLE: R3# - Range -128 to 127
A1%Z - Range -32768 to 32767

These variables are initialized to zero before execution of
the program.

3.2.3.2 Long Numeric Variables

These variables are floating point variables, allowing opera:
tions with numbers to 14 significant digits. Long variables

do not have an appending identifier. They can be of varying
length.

These variables are initialized to zero before the beginning
of the program. Note, however, that you must re-initialize
these variables if restarts of your program are allowed.

3.2.3.3 Character StringﬁVariables

These variables can represent strings of characters, ranging
from 1 to 256 characters. The variable name, at the time of
declaration, must be followed by a dollar sign ($) and the
length, in number of characters.

EXAMPLE: 20 DCL A1$=125
30 pCcL B$=10

String variable A1 will be 125 characters in length; string
variable B will be 10 characters.

If the lLength specification is omitted, the length is impli-
citly declared to be 15 characters.

Prior to program execution, all string character locations
are initialized as the character '"blank". However, you must
re-initialize these variables (as necessary) if restarts of
your program are allowed.

Note that the $ suffix is used only when the variable 1is
defined.

3.3 CONSTANTS

Constants may be used in the program, expressed as follows:

Decimal Constants - Expressed as a decimal number,
4 or 4.3.

Hexadecimal Constants - Expressed as a short numeric,
preceded by a slash (1), as /2F

String Constants - Expressed in quotation marks, &

(string Literal) "STRING".

e

ny)

©»

S

3.4.1 Equivalencing Variables

As each variable is placed in memory, the system notes its
address. It is therefore possible to equivalence variables -
that is, have 2 or more named variables occupy the same phy-~
sical memory location. The variables must be defined in the
same type of memory.

Example: 10 FIELD=M
20 DCL A$=128
30 FIELD=M,A
40 DCL X1#,X2#,YX(63)

The variable X1 occupies the same memory locations as the
first byte of string A. Variable X2 occupies the same address
as the next byte of A; and array Y occupies the same memory
locations as bytes 3 through 65 of string A.

String A Equiv. Variables

Address XXXX
Byte 1 . X1
———————————— s A L L LY L T T ey
Byte 2 X2
............ wl A i et e e i o 5 il
Byte 3 Y(1)
Byte 65 L Y(63)

This allows for easy breakdown (or construction) of a string
-= such as a disk record -- into its component parts.

3.5 DCL INSTRUCTION

This instruction declares the variables which will be stored
in memory as specified by the last FIELD instruction which
was encountered in the program. The variables are noted and
their addresses are assigned in the sequential order of defi-

nition in the DCL instruction.

The general format of a DCL instruction is:
DCL V1, .., Vn where a series of variables can
be declared by a single DCL
instruction.

For each variable, the DCL instruction specifies:

o The variable name, A through Z (0 excluded), option-
ally followed by a single digit, 0 through 9.
Example, A3.

o The variable type, as:

numeric: a short variable (type-=1 or .
type-2) or a long (14 signifi-
cant digits) floating point
variable.

alphanumeric: a character string

o The length specification (for lLong variables and
string variables).

o The associated dimensions (vector or table), if neces-
sary. The variable type is defined by an identifier
which is:

- short variable (occupying 1 byte)
% - short variable (occupying 2 bytes)

$ - string variables (occupying a maximum of
256 bytes)

The identifier is used only when the variable is declared in
the DCL instruction,

Example: 100 DCL A#, A1%(10), B$=12(128), T=7(12,8)

Long variables operate differently from short integer varia-
bles and do not require identifiers. A variable cannot have
more than one identifier--i.e., it cannot be declared several

times under different identifiers.

Long variables and character strings have an implicit Length.
However, the user can specify a Length by following the va-
riable with an equal sign (=) and its length in bytes.,

Examples: T=4 Can be interpreted as a lLong variable
four bytes in lLength.

T=4(17,18) Can be interpreted as a table of
dimension 17 x 18; each element is de-
fined as four bytes in lLength.

T1$=10(15) Can be interpreted as a vector of 15

values; each element is a string 10
bytes in length.

3.5.1 Remarks

o The maximum length for character strings is 256.

o The maximum length for long variables is 8 bytes -
this corresponds to 14 decimal digits plus the deci-
mal point and the sign.

o The Length specification (for lLong variables and
string variables).

o The associated dimensions (vector or table), if neces-
sary. The variable type is defined by an identifier
which is:

- short variable (occupying 1 byte)
% - short variable (occupying 2 bytes)

$ - string variables (occupying a maximum of
256 bytes)

The identifier is used only when the variable is declared in
the DCL instruction.

Example: 100 pCL A#, A1%2(10), B$=12(128), 7=7(12,8)

Long variables operate differently from short integer varia-
bles and do not require identifiers. A variable cannot have
more than one identifier--i.e., it cannot be declared several
times under different identifiers,

Long variables and character strings have an implicit Llength.
However, the user can specify a length by following the va-
riable with an equal sign (=) and its length in bytes.

Examples: T=4 Can be interpreted as a long variable
four bytes in length.

T=4(17,18) Can be interpreted as a table of
dimension 17 x 18; each element is de-
fined as four bytes in length,

T1$=10(15) Can be interpreted as a vector of 15

values; each element is a string 10
bytes in length.

3.5.1 Remarks

o The maximum length for character strings is 256.

o The maximum length for long variables is 8 bytes -
this corresponds to 14 decimal digits plus the deci-
mal point and the sign. '

If m is the Length of the variable, the number of decimal di-
gits -- that is, the precision of the information is: (m=1) =*
2. If n is the desired precision--that is, the number of de-
cimal digits, the Length of the variable must be (n/2 + 1),
Thus T=6 has a precision of (6=-1) * 2 or 10 decimal places.

If one wants a precision of 5 decimal places, a Llength of 4
would have to be specified.

(5/2 + 1) (2.5 + 1) 3.5 4
Example: S PROGRAM "DIVISION"

10 FIELD=M

15 pCL N,D,Q

50 SEGMENT O
200 ASK=1: "NUMERATOR" = N
300 ASK=1: "DENOMINATOR" =
400 LET Q@ = N/D

500 PRINT=1: N,D,Q
600 GOTO 200
700 ESEG O
800 END

D

The variable are assumed to be long variables with a maximum
precision of 14 digits. ALl variables are located in central
memory.

If we change instruction 15 to
15 DCL N=6, D=6, Q
the program will use the variables N and D with a precision

of 10 decimal places; and a precision of 14 for the variable
Q.

3.5.2 Sequence of Declaration Instructions

100 PROGRAM "Name"
* e FIELD........

e 0o DCL...I......
® 08 DCL...I‘...'.
® e e FIELD-...O-..
® s 8 chL..........
® o0 FIELD........
o @8 DCLI.........

e &0 SEGMENT 0....

For each FIELD, there must be as many DCL instructions as ne-
cessary to List the desired variables. The number of FIELDS
is unlimited.

3.6 HANDLING ARRAYS AND MATRICES

3.6.1 Arrays

Occasionally, it is desirable to group information together
when there is a common relationship among the data. One exam-
ple would be the grades of a class on a particular exam. It
would be possible to represent each grade with a separate
variable, but the relationship among the data would be lost.
BAL allows the information to be expressed as a group by de-
claring a variable name to be a group variable name, speci-
fying how many items are in the group. The declaration would
be as follows for a group of 50 items called J8.

200 pcL J8(50)

Throughout the Life of the program, variable J8 would be the
name of the group. To express the value of a single item with-
in the group, subscripting is performed. Thus to refer to the
fifth item, one would specify JB(5). Since it is not possible
to write J8g to indicate a subscript in parentheses as a con-
vention. The following example assigns J8g to another vari-
able.

250 LET B = J8(5)

Such a group as J8 is commonly called a single dimension
array.

3.6.2 Matrices

There are occasions when there are two relationships among a
group of data. This can be expressed with a matrix. To de-

clare such a group:
300 pCL J(50,10)

To refer to an individual item within the group--as with an
assignment statement--requires two subscripts., The subscripts
are used to refer to the row and column location of an indi-
vidual data item within the structure. Hence, to specify the
item located in the fourth row, ninth column of the group J

would require a specification of J(4,9). A matrix declaration
of K(50,10) means that there are 50 x 10 or 500 data items in
the group.

Consider an example of a matrix. We have a high school con-

taining four grades of students--9th, 10th, 11th, and 12th.

There are boys and girls in each grade. It would be possible
to define the school with a matrix as S(2,4) or S(4,2). That
is, two types of students and four types of grades. To refer
to the girls in the 9th grade would mean a specification of

one of the eight matrix positions.

3.6.3 bDeclaring Arrays and Matrices

Arrays and matrices may be declared using any type variables:

AZ#(5) B#(5,6) short variables, type-1
cx(10) p%(7,5) short variables, type-2
J1(15) L(4,9) | long variables

K$(25) M2$(8,8) string variables

The Length of each data item is declared by default. One byte
for short variables, type-1; two bytes for type-2; eight by-
tes for long variables; and 15 bytes for string variables.

The user can specify the lengths of group variables of the
long or string type by using the following convention:

R4=3(9) N=3(8,7)
W$=9(25) X9$=256(5,70)

The number before the parentheses is the length
specification. The numbers within parentheses specify the
List or matrix size. The minimum length for a long variable
is 1 byte; the maximum is 8 bytes. For a string variable, the
minimum is 1; the maximum is 256 bytes.

Note that, once a variable has been declared as to type, the
symbol (#,%,%) is not used within the body of the program to
specify the variable type. Thus you write:
100 LET Y = K(15)
not 100 LET Y = K$(15)

to specify location 15 within the string list K.

3.6.4 Examples

The obvious advantage of arrays and matrices is the use of
one variable name for many data items. But there is a second

3-10

advantage. Since the elements may be selected using a vari-
able as a subscript, the entire group can be operated on
systematically. Consider a program having as a declaration:

100 pcL A(50),B,I#
The following code would initialize List A to S's:

500 FOR I=1 TO0 50
510 LET A(I)=5
520 NEXT I

Finding the average of all the elements of A is easily done:

600 LET B=0

610 FOR I=1 70 50
620 LET B=B+A(I)
630 NEXT I

640 LET B=B/50

By extension, it is possible to perform other statistical
operations as well as matrix operations. However, these tech-
niques are equally applicable to business problems. Consider
an application requiring the retention of an account number,
an account name, and a balance.

The declaration might be as follows:

200 DCL A(50); account number
210 DCL A1$=25(50); account name
220 DCL A2(50); account balance

In this case, elements with the same subscript in each of the
lists refer to the same account. If the balance is to be ze-
roed at the beginning of the year, this is easily done (see
Lines 500-520 above, substituting A2 for A).

To search for a matching account number, assuming B contains
the account sought:

800 FOR I=1 TO0 50
810 IF A(1)=B GOTO 850

820 NEXT I
830 PRINT=1:TABV(1),"NO SUCH ACCOUNT"

840 STOP
850 PRINT=1:TABV(1),"ACCOUNT" ,B,"IS" A1(I)

3-11

Note that, once a variahlz has been declared as to type, the
symbol (#,%,%) is not used within the body of the program to
specify the variable type. Thus you write:
100 LET Y = K(15)
not 100 LET Y = K$(15)

to specify location 15 within the string List K.

3.6.4 Examples

The obvious advantage of arrays ‘and matrices is the use of
one variable name for many data items. But there is a second
advantage. Since the elements may be selected using a vari-
able as a subscript, the entire group can be operated on
systematically. Consider a program having as a declaration:

100 pCL A(S50),B,1¥#
The following code would initialize List A to S5's:

500 FOR I=1 70 50
510 LET A(I)=5
520 NEXT I

Finding the average of all the elements of A is eacily done:

600 LET B=0

610 FOR I=1 70 50
620 LET B=B+A(I)
630 NEXT I

640 LET B=B/50

By <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>